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Abstract

The traditional form of spacecraft commanding is with se-
quences that specify when commands should execute based
on a schedule generated on the ground. Some sequences have
control logic and event driven responses to increase flexi-
bility, but it is limited. An approach to increase autonomy
is to use goal-based planning and commanding. Using this
paradigm, intention and behavior is modeled on board the
spacecraft. In this paper we describe MEXEC (Multi-mission
EXECutive), a multi-mission, task-based, onboard planning
and execution software designed specifically to be used as
flight software. As a path to infusion for future flight projects,
we describe two experiments performed on the ASTERIA
CubeSat and testbed that demonstrate that MEXEC can be
integrated and used for spacecraft operations and increase
robustness and science return compared to the standard se-
quences that were being used.

Introduction

The prevalent form of spacecraft commanding is through the
use of sequences. As the name implies, sequences generally
define a sequence of commands to execute at absolute or
relative times, but no information is maintained about why a
specific command is needed or why a command is sched-
uled in a particular way to achieve a desired effect (Gat
and Pell 1998). Although some sequences allow for control
logic, such as if statements or loops, and some even allow
for event driven responses (Grasso and Lock 2008), there is
limited flexibility in how sequences are executed, which lim-
its the autonomous behavior that can be achieved. Further-
more, when unexpected states or events happen, the space-
craft response is often to go into safe mode, which may pre-
vent the spacecraft from performing future tasks that could
have been safe to execute (Gat and Pell 1998). Because the
spacecraft is not able to autonomously recover from the un-
expected state, scheduled science gains are potentially lost.
An alternative approach is to use task- or goal-based plan-
ning and commanding on board to increase autonomous be-
havior by maintaining intentions and effects on board the
spacecraft. A goal can be described through tasks, which
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model spacecraft behavior and constraints, where the behav-
ior is the expected change of state by executing the task and
the constraints are the states that are required to successfully
carry out the task. A set of tasks makes up a task network.
The tasks are activities to be accomplished and the modeled
behavior and constraints on each task enforce establishment
and protection of required states. An onboard planner can
use a task network with the most up-to-date state informa-
tion to generate conflict-free schedules and effectively use
time and resources, while an executive can perform real-time
constraint checking on executing tasks. In case any unex-
pected events occur, the planner can re-plan a new schedule,
and the executive can continue to execute any tasks that are
safe to do so, based on constraints defined in the network.

We follow this approach in MEXEC (Multi-mission EX-
ECutive), a multi-mission, goal-based, onboard, integrated
planning and execution software that uses task networks
(Verma et al. 2017; Troesch et al. 2019). With MEXEC,
since an operator specifies a goal where the intent is main-
tained through a network of tasks, it is possible to in-
crease science return and improve robustness compared to
sequences, as well as respond to anomalies without safing
the spacecraft.

Although increased autonomy is an enabler for future
missions where human-in-the-loop commanding is not pos-
sible, it is important to methodically prove out autonomous
capabilities and allow users to gain confidence in new soft-
ware. To that end, we have developed MEXEC in a system-
atic way to be flight-ready, including performing incremen-
tal flight and testbed experiments on the Arcsecond Space
Telescope Enabling Research in Astrophysics (ASTERIA)
CubeSat.

ASTERIA was a 6U CubeSat developed as a collabora-
tion between the Jet Propulsion Laboratory (JPL) and the
Massachusetts Institute of Technology (MIT). The flight
software was built in F* (Bocchino et al. 2018) and nomi-
nal operations were performed with sequences. It was de-
ployed from the International Space Station on November
20, 2017 for a 90-day prime mission to demonstrate preci-
sion photometry technology. It successfully achieved all of
its primary mission goals of pointing stability, thermal sta-
bility, and photometric capability (Smith et al. 2018). Af-



ter that, ASTERIA had three extended missions, the third
of which focused on using ASTERIA as a “testbed in the
sky” for technology demonstrations (Fesq et al. 2019). As
part of those demonstrations, MEXEC was flown to demon-
strate nominal science operations using task networks. A
second in-flight experiment was planned, but was converted
to a testbed-only demonstration when the spacecraft stopped
communicating three months shy of the expected end of mis-
sion (Jet Propulsion Laboratory, California Institute of Tech-
nology 2020).

In the rest of this paper, we will begin by reviewing some
related work, then describe MEXEC and two experiments
that were performed - one on the ASTERIA spacecraft and
one on the testbed. We will finish with a look ahead to future
work and present conclusions.

Related Works

Sequencing languages such as the Virtual Machine Lan-
guage (VML) can provide higher-level programming capa-
bilities compared to traditional sequences. This was demon-
strated successfully on Spitzer (Peer and Grasso 2005),
where less conservative schedules could be generated by
taking advantage of relative timing instead of conservative
estimates, which allowed pre-identified observations to be
added from a list whenever possible. However, the resulting
execution is still based on a sequence and no projection or
re-planning is performed.

A move toward more intelligent, autonomous systems
through goal-based commanding instead of sequence-based
commanding was seen on Remote Agent, which was demon-
strated on Deep Space One (DS1) (Muscettola et al. 1998).
Remote Agent flew on DS1 for 48 hours and used model-
based programming and onboard search with goal-based,
closed-loop commanding to achieve more autonomous be-
havior.

The Autonomous Sciencecraft Experiment (ASE) on
Earth Observing One (EO-1) (Chien et al. 2005) also
demonstrated higher-level commanding based on goals with
robust execution by responding to events and anomalies at
execution time. ASE used the Continuous Activity Schedul-
ing Planning Execution and Replanning (CASPER) (Chien
et al. 2000) software to perform onboard planning and com-
municate with an execution system. ASE flew for over
12 years (Ellis 2017), aiming to maximize science return
by taking data, processing it to create new goals, and re-
planning on board.

The idea of a spacecraft executive has been used in
other software on many other missions, such as the Space-
craft Commanding Language (SCL) on ASE and TACSAT-3
(Chien et al. 2005; Mackey et al. 2010), Remote Agent Ex-
ecutive on DS1 (Pell et al. 1997), and VML on Spitzer and
Dawn (Grasso and Lock 2008). MEXEC shares many char-
acteristics with the planner and executive on Remote Agent
as well as CASPER on ASE, such as having a separate plan-
ner and executive and performing constraint-based, periodic
planning in a limited scheduling window. MEXEC also in-
herits the use of a commit window from CASPER (described
later in this paper). However, one of the major differences is
that MEXEC provides a more consistent representation of

behavior modeling at planning and execution time and has a
tighter coupling between the planner and executive.

Looking ahead to future missions, the M2020 Onboard
Planner (Rabideau and Benowitz 2017) and MEXEC have
many similarities. In fact, they use the same timeline library
to search for valid intervals to place tasks during planning.
Both use a planner to schedule tasks and an executive to
perform real-time constraint checking. However, MEXEC is
multi-mission, whereas the Onboard Planner has a special-
ized planning algorithm with limited choice points or op-
tions during scheduling including what states can be repre-
sented in the timeline library.

MEXEC

MEXEC is a multi-mission, onboard planning and execu-
tion software that uses task networks to generate and exe-
cute conflict-free schedules to achieve goals. It consists of
three modules: a planner, an executive, and a timeline li-
brary which is used by the planner to search for valid inter-
vals to place tasks. MEXEC was designed specifically to be
used for flight software and to have a consistent, cooperative
design between the planner and executive. It also allows op-
erators to control the level of autonomy as is appropriate for
their needs.

Figure 1 shows a diagram of the MEXEC modules and
their interactions with the ground and other flight compo-
nents. MEXEC assumes that there is a state database that re-
ports system state and a command dispatcher that dispatches
commands. The ground sends a task network to the space-
craft, which is read by the planner. The planner schedules
the tasks with the help of the timeline library and the system
state from the state database. Once sufficiently close to the
start time of a task, the planner passes it on to the executive,
which performs real-time constraint checking to ensure safe
execution of the task. Task execution updates are sent from
the executive to the planner to keep the planner informed in
case re-planning is necessary.
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Figure 1: Diagram of the interactions between components
in MEXEC. MEXEC components are shown in blue.

Tasks and Templates

Tasks represent a desired change to the system. Besides
a unique ID and a name to identify them and a ground-
specified priority to inform scheduling, tasks include a com-



mand to execute (which may be no operation or even be a
sequence) as well as expected effects of executing the task
based on spacecraft behavior (impacts) and the conditions
required for execution (constraints). Impacts and constraints
can be defined at the beginning (pre), during (maintenance),
or at the end (post) of a task. Conditions to set limits on task
deviation at execution time, such as timeouts for waiting on
constraints to be met or when to skip tasks, can be defined
as control conditions. In the case of execution failure, tasks
can also specify contingencies, which are actions to take on
the task network by the planner, such as adding new tasks
from templates. Templates are tasks that are available to the
planner, but that are not explicitly requested to be included
in the schedule. An immediate response by the executive in
the case of task failure can also be defined in the form of a
command to execute.

Timelines

The timeline library supports planning by calculating valid
intervals for tasks. Many of the concepts outlined in (Chien
et al. 2012) for common capabilities for different timeline
representations are supported by this timeline library, in-
cluding support for analyzing schedules and constraints for
state and resource timelines, which we separate into atomic,
state, claimable, cumulative and cumulative rate timelines.
Each resource or state that is referred to in a constraint or
impact is represented as its own timeline and can either por-
tray values reported by the spacecraft system or values man-
aged internally by MEXEC, also known as internal states.
Impacts from tasks are placed on the timelines to change the
timeline value and are projected into the future to predict fu-
ture state to compare to constraints and determine conflicts.
Impacts can assign a value, a change in value, or a change
in rate to a timeline. The aggregation of impacts and their
projections provide a timeline result, or expected value, at
any given time. A constraint is in conflict if the result dur-
ing the constraint is not within the prescribed values. System
state updates from the state database are also applied to the
timelines to keep the latest spacecraft values synchronized.
This allows the planner to perform its perioidic constraint
checking on all states with up-to-date values.

During scheduling, the planner uses the timeline library
to look for valid intervals in which to place a task. A valid
interval is one in which a task can be placed without creating
conflicts. Any previously scheduled tasks have their impacts
and constraints placed and projected on the relevant time-
lines. To find valid intervals for a task, the timeline library
systematically places the task on the timelines around result
times and checks for conflicts.

Timeline results are also adjusted when feedback from
the executive notifies the planner that task execution has de-
viated from its originally scheduled time. In this case, the
task’s impacts and constraints are moved to reflect the ac-
tual execution of the task.

Additional information about the timeline library can be
found in (Rabideau and Benowitz 2017) as described for the
prototype for the Mars 2020 Rover.

Planner

The planner, with the valid interval calculations provided
by the timeline library, generates and maintains conflict-free
schedules given an input task network. Every planning cy-
cle, the planner takes the following actions in order:

1. Commit tasks to the executive

2. Consolidate impacts

3. Schedule tasks (configurable)

4. Repair conflicts (optional)

5. Optimize the schedule (optional)

The planner makes use of various timing windows to in-
form decisions. The first is the plan process interval, which
defines the frequency at which the planner cycle is run. This
interval must be longer than the worst case duration of the
planner cycle. The plan process interval also influences the
duration of the commit window, which is used to determine
which tasks should be passed on, or committed, to the ex-
ecutive, first defined in (Chien et al. 2000). Any scheduled
task with a start time before the end of the commit window
should be committed. Since tasks are only committed at the
beginning of the planning cycle and tasks should be com-
mitted before their start time, the commit window must at a
minimum be as long as the plan process interval.

Another important window is the scheduling window. Un-
scheduled tasks with a preferred start time before the end
of the scheduling window are considered for scheduling by
the planner during the planning cycle, allowing the planner
to work on a subset of the problem at a time. The plan-
ner then schedules the tasks within the plan horizon, which
starts after the commit window, to prevent tasks from be-
ing scheduled before they can be committed, and extends
to the plan end time, which defines the time before which
all tasks in the task network should be scheduled. During
scheduling, the planner checks for conflicts during the con-
flict checking window, which starts after the commit window
and goes until the maximum time allowed on timelines. The
conflict checking window starts after the commit window
since any tasks already committed to the executive should
not be changed by the planner since they may have started
executing already, and any conflicts that occur at execution
time will be handled by the executive. A summary of the
timing windows and intervals is shown in Figure 2.
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Figure 2: Diagram of the timing windows and intervals used
by the planner.

After committing tasks, the planner consolidates impacts
on the timelines. This step reduces the memory necessary to
represent a timeline by combining past impact results into a



single result. The memory footprint of MEXEC in general is
adjustable based on various configuration values.

Next, the planner schedules any tasks in the scheduling
window. One feature of MEXEC is that it is easy to plug
in different scheduling algorithms that are most appropriate
for the application in which it is being used. In fact, we used
different scheduling algorithms for our two experiments.

If enabled by the configuration, two additional capabili-
ties can be used after scheduling. The first is to find conflicts
and attempt to repair them using iterative repair techniques,
and the second is to optimize the schedule by shifting tasks
closer to their preferred times, if possible. Neither of these
capabilities was used for our experiments, but are supported
by MEXEC.

The planner also handles incoming information when it is
not executing its repeated cycle. This includes reading task
network files, handling state updates from the state database
to be placed on timelines (as mentioned in the Timelines sec-
tion), and interpreting task execution updates from the exec-
utive. Task networks are uploaded to the spacecraft from the
ground in the form of a binary file. The planner reads the
file and performs input validation before storing the infor-
mation to ensure that the incoming timelines and tasks will
fit within the available memory and satisfy any assumptions
made by the tasks. Both state database updates and task up-
dates are used by the planner to update timelines, which pro-
vide information to the planner in the case that re-planning
is required. Task updates also notify the planner of task com-
pletion status, including if and why a task failed. This infor-
mation is used to determine if any contingency actions need
to be taken.

Executive

The executive takes care of task execution and handles
adjustments needed for execution deviation. The MEXEC
executive converts constraints and control conditions into
boolean expression trees to be evaluated at each stage of
task execution on a per task basis. The evaluation is based
on system state reported from the state database or from in-
ternal state propagation. Each transition to a new stage and
any faults are reported to the planner.

In the executive, all constraints are monitored separately
for each task. Pre constraints, including the start time of
the task, must be achieved before the task will start. If the
constraints are not achieved within a defined timeout inter-
val, the task is considered failed. Once the constraints are
achieved, the executive dispatches the command associated
with the task and starts monitoring any maintenance con-
straints in the task. The executive expects a command re-
sponse to indicate that the command was dispatched and
completed successfully. If the command response comes
back with an error, or the command response does not come
back within a defined timeout interval, the task fails. Addi-
tionally, if any of the maintenance constraints do not hold
true before the end of the task, the task fails. If the com-
mand response returns with success, and the maintenance
constraints hold, the task completes with success after the
duration of the task has been reached.

Experiment 1

The goal of the first experiment was to demonstrate that
MEXEC could be integrated with the existing ASTERIA
flight software and that it is sufficiently mature to fly and
be used for operations. To show this, MEXEC was used to
replicate the behavior of ASTERIA’s standard sequences. A
standard sequence is a binary file that can be run onboard
by the ASTERIA sequencer. It is generated from an input se-
quence, which is simply a textual specification of a sequence
of spacecraft commands to be executed. This input sequence
is also used to generate binary task networks that are run by
MEXEC and behave like the standard sequences generated
by the same input. Although using MEXEC to replicate stan-
dard sequences does not exercise the majority of MEXEC’s
capabilities, it is an important, incremental step in proving
out the MEXEC software.

Scenario

The ASTERIA sequencer supports absolute and relative
timed commands. An absolute timed command will start no
earlier than the given absolute time and a relative timed com-
mand will start no earlier than a specified relative offset from
the previous command. Both command types may start late
if previous commands run long.

For the first experiment, we simply performed nominal
operations sequences of setting up passes and taking science
observations, with the expectation that everything would ex-
ecute nominally. The major parts of our development in-
cluded flight software integration, MEXEC flight prepara-
tion, and task network design.

Design and Implementation

Several steps were required to perform an MEXEC onboard
experiment, the first of which was to integrate MEXEC
with F’, the flight software used on ASTERIA (Bocchino
et al. 2018). This involved designing and implementing sev-
eral new components to control and interact with MEXEC.
Wrapper components were created to send/receive messages
for the MEXEC libraries and hook them into ASTERIA’s
commanding, telemetry, and fault protection. Although this
integration required careful design, it showed how MEXEC
is readily adapted to fit within software rather than being
custom designed. It was decided that as a first step, a con-
servative approach to off-nominal behavior and fault protec-
tion would be implemented. In the case that fault protection
is triggered, MEXEC would clear out any outstanding tasks
and stop running. For this first experiment, it was expected
that all tasks would schedule sequentially; therefore, as a fur-
ther precaution, if any tasks could not be scheduled or any
parts of planning or execution were not nominal, this would
trigger a fault response to clear out and stop MEXEC. A state
database was also needed to store spacecraft state values to
be tracked by the planner and executive, and the Sequencer
needed to be modified to send the current task network se-
quence count to the state database. Finally, a manager com-
ponent was needed to control timing and the interaction of
MEXEC with fault protection.

Careful planning and timing considerations were taken
into account when designing the manager component. The



command for loading a task network into MEXEC is rela-
tively straightforward: load the task network file, and when
it succeeds, start running the planner and executive at their
respective rate groups. To clear and stop MEXEC, a new
command was implemented, which can be called either by
the ground or by fault protection; however, it is quite com-
plex due to potential timing risks. For instance, if fault pro-
tection were to first shut down the planner, a command from
the executive could theoretically load another task network
and restart the planner. Another risk is if the planner were
busy planning, but took an extended period of time to fin-
ish and respond to the shutdown command. Cases like this
required some verification and validation work, as well as
careful design to handle.

Memory limitations were also considered. Obviously,
ASTERIA was not designed with MEXEC in mind, and
therefore did not have any spare memory for MEXEC, so
buffers needed to be shrunk to make room. It was agreed
that MEXEC would fit within 2 MB of memory, which lim-
ited task networks to 100 tasks or fewer. Since ASTERIA
sequences can have thousands of commands, clearly a one-
to-one mapping of tasks to commands would not work, so
we allowed the task network to issue commands that start
standard sequences.

Writing the task networks for this experiment entailed
translating input sequences written by the operations team to
task networks. Some of the commands were grouped into se-
quence files which were referenced by tasks in the task net-
work to execute. This required creating new tools to trans-
late and write task networks. For the first experiment, task
network writing was a relatively straightforward translation
from sequences. One complication was that the ASTERIA
commands did not have a defined or documented duration,
so the duration of each task was interpreted as the relative
delay between the previous task and the current task.

As this first experiment was to replicate ASTERIA’s stan-
dard sequence behavior, the constraints and impacts mod-
eled in the task networks were simple. Two states, repre-
sented as timelines, were used: one to monitor the task se-
quence counter, the other to monitor whether a standard se-
quence was currently running. Each task had a pre constraint
that the sequence counter be one higher than the previous
task, as well as a post impact that increases the sequence
counter by one. This enforced a strict ordering of the tasks:
they needed to be scheduled and executed in sequential or-
der. In addition, each task had a pre constraint that there was
not a standard sequence running. This prevented commands
issued by a task network from running concurrently with
standard sequences. Figure 3 illustrates how the impacts and
constraints relate to each other to enforce the sequential or-
dering of the tasks. It is clear that the sequence count impact
from each task satisfies the constraint for the next task, en-
forcing the ordering.

One of the properties of the MEXEC planner is that it is
built to be multi-mission and therefore made to be easy to
plug in different scheduling algorithms based on the needs
of the mission. For this experiment, part of our effort was
designing and implementing a naive algorithm that sched-
uled the tasks sequentially. MEXEC’s planning capability
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Figure 3: An example of the impacts and constraints used
for the onboard experiment showing how they enforce a se-
quential order. This figure was created using a prototype of a
tool developed to visualize the relationship between impacts
and constraints in a task network.

was not seriously exercised. Beyond that, significant test-
ing, input validation, static analysis, memory optimizations,
speed optimizations, and other changes were made to pre-
pare MEXEC for its first flight experiment. A description
of the assurance techniques that were used can be found in
(Smith et al. 2020).

Results

MEXEC was demonstrated on board the ASTERIA Cube-
Sat from September 4 - 20, 2019, and was used to perform
observations of HD219134, New York City, the Moon, and
the Vesta asteroid. All uploaded task networks were sched-
uled and executed as expected, with some caveats. Figure 4
shows an excerpt of the plan for one of the uploaded task
networks and the associated effects on the timelines from
the planned schedule.

tasks
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Sequence Count
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Figure 4: Plan excerpt of an uploaded task network showing
effects on timelines.

ASTERIA had some idiosyncrasies that guided both our
design choices and the results we encountered. As discussed,
each task had a pre constraint that there be no standard se-
quences running, which might not seem necessary, since all
tasks schedule sequentially. However, running a standard se-
quence in ASTERIA reported completion when the com-
mand to run the sequence had been dispatched, not when all
commands in the sequence were complete. When the com-
mand dispatching the standard sequence completed, the task



network sequence count was incremented, even though the
standard sequence had not completed yet. ASTERIA com-
mand durations were implied by relative sequence command
times. In most cases, this calculation was correct, but not al-
ways. If a task had an incorrect duration and a sequence ran
longer than expected, nothing prevented the next task from
dispatching while the first was still running. This behavior
appeared in our testbed runs before the actual experiment,
and was caused by the combination of premature command
response and lack of concrete duration information about
tasks. We prevented this from being an issue with the pre
constraint on running sequences so that no task could start
executing if a standard sequence was already running.

Another issue encountered during both testing and the in-
flight experiment was an imperfect system timer. The ASTE-
RIA flight software clock, like all clocks, has a limit to its
precision. The planner and executive use the current system
time, truncated to the nearest second, to evaluate whether
it is time to commit, dispatch, or otherwise process a task.
Once in a while, assumptions made by the planner and ex-
ecutive about the precision of the timer caused a task to dis-
patch late or commit late by a second. These timing issues
and other experiences during the first experiment informed
many of the changes and designs for the second experiment
and beyond. Taking into account the imprecise timer, all task
networks in the first experiment succeeded in testing and the
onboard experiment by scheduling and executing in order
and starting at or after the scheduled time, like a standard
sequence would.

Experiment 2

The goal of the second experiment was to demonstrate
MEXEC's ability to react to events both in the planner and
in the executive. This required more complex impacts and
constraints in the task network as well as using contingen-
cies, control conditions, and responses by the executive. Fur-
thermore, we wanted to highlight a scenario where MEXEC
could be useful and improve operations for ASTERIA. The
second experiment had to be performed on the ASTERIA
testbed due to loss of contact with the spacecraft.

Scenario

The motivating scenario for the second experiment was mo-
mentum management. ASTERIA used the fleXible Attitude
Control Technology (XACT) from Blue Canyon Technolo-
gies (BCT) (Blue Canyon Technologies) as its attitude con-
trol system, which has 3-axis attitude control with three re-
action wheels and three torque rods as described in (Ma-
son et al. 2017) from its first flight on the MinXSS-1 Cube-
Sat and in (Pong 2018; Pong, Sternberg, and Chen 2019;
Smith et al. 2018) on ASTERIA. External torques caused
momentum buildup, especially since ASTERIA had a large
residual magnetic dipole moment. Too much buildup causes
attitude control loss (Pong, Sternberg, and Chen 2019). To
protect the spacecraft, ASTERIA fault protection had a mo-
mentum magnitude threshold that, if surpassed for some per-
sistence, triggered the spacecraft to go into safe mode and
reset. Resetting the spacecraft not only caused any upcom-

ing observations to be lost, but also required reset recov-
ery procedures during the following passes, which meant
that the passes could not be used for useful downlink of
data. When scheduling observations, operators used ground
tools to predict momentum buildup and reaction wheel zero
crossings, which led to lower quality science data. If the
momentum magnitudes were too high, or the zero cross-
ings were at unfavorable locations, the observations were
rescheduled (Pong, Sternberg, and Chen 2019). Observa-
tions were scheduled conservatively to avoid tripping a fault
and resetting the spacecraft.

MEXEC can be used to autonomously dump momentum
and resume safe observations before resetting the spacecraft
and losing all upcoming observations and pass downlinks.
Since the risk of resetting the spacecraft is reduced, obser-
vations can be scheduled less conservatively, which could
allow more observations to be scheduled and increase ob-
servation quality. MEXEC can monitor the momentum mag-
nitude on board and react by sending commands to dump
momentum and skip upcoming observations before the reset
threshold is reached. Once an acceptable momentum magni-
tude has been reached, MEXEC can resume observations.

Design and Implementation

In order to monitor the momentum during the scenario, the
momentum magnitude, calculated from telemetry values,
was added to the state database.

The task network was generated based on the schedul-
ing of three observations of 55 Cancri using the traditional
sequence operations ground tools. All tasks had constraints
and impacts based on their behavior instead of simply a se-
quence ordering count, as was seen in the first experiment.
Each task started either a single command or a standard se-
quence of commands. Any tasks that started a standard se-
quence had a constraint that they not execute while another
task that started a standard sequence was running. A dis-
tinction was made between tasks that supported science ob-
servations and those that were required for setting up and
taking a pass. Science observations had the restriction that
they respect momentum management, whereas pass tasks
should execute regardless of momentum magnitude (unless
fault protection had been triggered).

To manage momentum and enforce the restriction on ob-
servation tasks, we used a long-running momentum moni-
tor task. This task had a maintenance constraint on momen-
tum magnitude. If the momentum magnitude went above the
trigger threshold (which is lower than the fault protection
threshold), the momentum monitor task would fail, trigger-
ing an immediate response in the executive to start a standard
sequence to dump momentum and return to a known state, as
well as triggering a contingency response in the planner. The
contingency response was to re-schedule a momentum mon-
itor and an observation setup task when the momentum mag-
nitude had dropped to a safe level. All science observation
tasks had a constraint that they should execute only if the
momentum monitor was running. Therefore, these tasks fail
when the momentum monitor fails. Additionally, the science
observation tasks had a control condition to skip the task if
the momentum monitor was not running. This sequence of



events is shown in Figure 5 with science observation tasks.
Figure 6 shows a simplified version of what a subset of the
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(a) Tasks have been scheduled and some have been committed. The
higher momentum magnitude trigger response threshold is shown
in relation to the lower threshold required for re-planning.
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(b) The momentum magnitude has increased and is above the trig-
ger threshold for some persistence. This violates the momentum
monitor task’s maintenance constraint, causing it to fail, which then
dispatches a command to dump momentum and return to a known
state. It is expected that the upcoming tasks will be skipped.

Timelines

persistence

Momentum
Magnitude

\

Tasks committed  scheduled

(c) The planner also removes scheduled tasks from the schedule.
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(d) When the momentum magnitude has decreased to the re-
planning threshold, the planner schedules another momentum mon-
itoring task, as was added by the contingency, and any other tasks
that can be scheduled.

Figure 5: This figure shows the sequence of events that hap-
pen after scheduling and committing tasks and responding
after the momentum magnitude goes too high. The momen-
tum monitor task is shown in grey and all other tasks are
science observation tasks shown in blue. The Momentum
Magnitude timeline is also shown.
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obs_num_setter

initialize_camera

go_to_eci_attitude
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turn_off_imager

go_to_fine_sun_point

Figure 6: Simplified excerpt of what the constraints and im-
pacts for some of the tasks in the second experiment could
look like. This figure was created using a prototype of a tool
developed to visualize the relationship between impacts and
constraints in a task network.

tasks, constraints, and impacts look like with the relation-
ships between them.

This also highlights some differences from the first exper-
iment. In this experiment, we expected that there would be
times when tasks do not schedule or fail during execution,
so the fault protection responses had to be updated to reflect
this change. The more complex constraints and re-planning
needs for this scenario also required a different scheduling
algorithm.

Since we could not fly this experiment on the ASTERIA
spacecraft, and were instead using the ASTERIA testbed,
we used the Real-time Dynamics Processor (RDP), designed
and built by BCT, to simulate sensor input to the XACT
(Pong, Sternberg, and Chen 2019). We selected thresholds
that reflected the behavior simulated by the RDP.

Results

The task network that we ran on the testbed surpassed the
momentum threshold four times and recovered successfully
each time to resume observations. Figure 7 shows when and
how the momentum changed. The times with the grey back-
ground show when science observations were scheduled.
The momentum threshold was exceeded in between tasks
and such that the momentum dumping response returned the
momentum magnitude to an acceptable level for all tasks to
execute.

The results of this scenario show that the MEXEC soft-
ware successfully responds to onboard state information
and takes action both in the executive and the planner. The
executive successfully enforced the momentum monitoring
task’s maintenance constraint, failed the task when the con-
straint was violated, and dispatched the specified momen-
tum dumping response. The momentum magnitude success-
fully decreased after the momentum dumping response. The
fact that the task failed was communicated by the executive
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Figure 7: The evolution of the momentum during the exper-
iment. The times of the science observations are shown with
the grey background.

to the planner. With this information, the planner added the
contingency tasks to the task network. The planner also re-
planned, removing any tasks that required momentum mon-
itoring from the schedule, only re-scheduling them when the
momentum magnitude reported by the state database satis-
fied the constraints for the momentum monitor. The testbed
did not trip any faults and it did not go into safe mode.

If this had been a flight situation where the ground tools
had not correctly anticipated the momentum buildup, and the
momentum would have exceeded the fault protection thresh-
old, the use of this task network with MEXEC could have
prevented the spacecraft from going into safe mode and may
have saved some science observations. This also potentially
would allow operators to be less conservative with respect
to the momentum prediction in the ground tools therefore
possibly increasing science quality.

Looking Ahead

We will continue to develop MEXEC to align with the needs
of potential future missions to help infusion and adoption
of MEXEC. Some additional experiments that are planned
on the ASTERIA testbed include experiments that inte-
grate MEXEC with AutoNav (Riedel et al. 2000), which
had a standalone experiment on board ASTERIA (Fesq et
al. 2019), as well as with the Model-based Off-Nominal
State Detection and Identification (MONSID) system (Kol-
cio 2016), which had planned an experiment on board AS-
TERIA before communication was lost. MEXEC is also be-
ing integrated with the Robotics Operating System (ROS) as
part of a prototype for the Europa Lander Autonomy con-
cept (Dooley 2019; Wang et al. 2020). There are many ways
in which we plan to expand the capabilities of MEXEC for
these tasks, including improving the hierarchical task struc-
ture, adding more scheduling algorithms and optimization
functions, changing priorities of tasks onboard based on
events or mission phase, and working with more complex
task plans to make MEXEC more powerful.

Conclusions

The experiments that were performed on the ASTERIA
CubeSat and testbed show that MEXEC can be integrated

into existing flight software and be used for operations, as
well as enable robustness and fail-operational command-
ing. The onboard experiment demonstrated successful inte-
gration of the MEXEC software into the ASTERIA flight
software and replication of the behavior of the standard
ASTERIA sequences for operations. The second experi-
ment, performed on the ASTERIA testbed, demonstrated
how MEXEC could benefit the ASTERIA mission’s mo-
mentum management by monitoring momentum, dumping
momentum when necessary, and recovering without reach-
ing fault protection limits. This would prevent the spacecraft
from going into safe mode, therefore allowing it to recover
and possibly continue science observations as well as take
passes without reset recovery procedures. This would also
potentially allow operators to generate less conservative ob-
servation schedules to increase the number of observations
or increase observation quality. Additionally, had contact not
been lost with ASTERIA, operations would have continued
as the spacecraft lost altitude and therefore also attitude con-
trol. The ground tools would have been less reliable in pre-
dicting momentum for observations and MEXEC could have
prevented unnecessary occurrences of entering safe mode.
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